KONSTITUTION UND KONFIGURATION DER PHOTODIMEREN 1-SUBSTITUIERTER ACENAPHTHYLENE

H. Mayer ¹ und J. Sauer *

Institut für Organische Chemie der Universität Regensburg. Universitätsstr. 31, D-8400 Regensburg (West-Germany)

<u>Abstract</u>: The structure and configuration of all possible photodimers 2 - 5 of four acenaph-thylene derivatives 1 could be elucidated by spectroscopic methods.

Die durch Licht ausgelöste Photodimerisation substituierter Acenaphthylene 1 kann prinzipiell zu vier Struktur- und Stereoisomeren 2 - 5 führen. Im Arbeitskreis von Bouas-Lauvent wurden bei Verwendung von 1-Cyanoacenaphthylen 1b nur die beiden Dimeren 3b (Singulett-Produkt) bzw. 4b (Triplett-Reaktion) erhalten 2 . Im Zuge photochemischer Studien in Lösung und Micellen 3 wurden von uns jeweils alle vier Isomeren 2b - 5b sowie 2d-f - 5d-f isoliert und strukturell geklärt.

Die Bestrahlung von 1b im kristallinen Zustand liefert ein Gemisch 2b - 5b, aus dem sich das syn-KK-Isomere 2b⁴ durch präparative HPLC abtrennen ließ; die Isomeren 3b, 4b waren nach Lit. 2 zugänglich. 5b konnte mittels HPLC abgetrennt und durch spektroskopische Daten identifiziert werden (s. unten).

Acenaphthylencarbonsäuremethylester 1d ergibt bei Bestrahlung in Methanol⁵ ein Isomerengemisch 2d - 5d, aus dem wiederum durch HPLC 3d - 5d abgetrennt wurden. 4d war auch über Bestrahlung von 1d unter Argon in 1,2-Dichlorethan zugänglich. Das noch fehlende syn-KK-Isomere 2d erhielten wir als Hauptprodukt der Feststoffbestrahlung von 1c⁶, Veresterung (2d : 3d : 4d : 5d = 86 : 9 : 2 : 3) und Abtrennung durch präparative HPLC.

Die Butyl- bzw. Octylester-Derivate (2e - 5e, 2f - 5f) konnten wir in analoger Weise vorwiegend durch HPLC-Trennung der bei Bestrahlung in Lösung erhaltenen Isomerengemische isolieren. Durch Umesterung des syn-KS-Dimeren 3d ließen sich die analogen Verbindungen 3e und 3f auch auf chemischem Weg herstellen.

Folgende experimentellen Befunde erlauben eine eindeutige Struktur- und Konfigurationszuordnung aller Isomeren 2 - 5.

- 1. Alle Dimeren zeigen bei CHN-Analyse bzw. MS-Untersuchung die korrekten Analysenwerte und Molmassen.
- 2. Die Unterscheidung zwischen syn-Reihe 2/3 und anti-Reihe 4/5 ist aufgrund der charakteristisch unterschiedlichen UV-Spektren leicht möglich. Die Substituenten R in 2 - 5 beein-

flussen Lage und Habitus der UV-Spektren verglichen mit den Grundkörpern $\underline{2a}$ und $\underline{4a}$ nur unwesentlich $\frac{7}{2}$.

<u>1 - 5</u>	<u>a</u> _	<u>b</u>	<u>c</u>	<u>d</u>	<u>e</u>	<u></u>
R	Н	CN	CO ₂ H	CO2CH3	CO ₂ C ₄ H ₉	C02C8H17

- Eine Differenzierung zwischen KK- und KS-Isomeren in syn- und anti-Reihe ist aufgrund mehrerer Kriterien möglich.
 - 3.1 Die Isomeren syn-KS und anti-KK sind chiral und liegen als Racemate vor. Beim syn-KS Isomeren <u>3d</u> spalten die Methylester-Signale bei Zugabe von Pr (facam)₃ im Verhältnis 1:1 auf. Das optisch aktive Verschiebungsreagens erwies sich beim anti-KK Isomeren <u>4d</u> als wirkungslos. Zugabe von PIRKLE's Alkohol im 15-fachen Überschuß führte bei <u>4d</u> zur (1:1)-Aufspaltung der Signale für die Esterprotonen sowie der Methin-Protonen des Cyclobutan-Ringsystems.
 - 3.2 Wie ¹H-NMR- und ¹³C-NMR-Daten der Tabb. 1 und 2 zeigen, kann man nicht nur zwischen syn- und anti-Reihe sondern auch jeweils zwischen KK- und KS-Isomeren unterscheiden.

In der anti-Reihe werden die Signale der funktionellen Gruppen (CO₂R bzw. Cyclobutan-Protonen) aufgrund des Anisotrophiephänomens der Naphthalineinheiten nach hohem Feld verschoben, die Aromatenmultipletts dagegen erscheinen tieffeldverschoben. Die Analyse der Cyclobutan-Kohlenstoff-Signale weisen charakteristische Unterschiede vom Substitutionstyp KK bzw. KS auf. Bei den KK-Isomeren finden sich die Signale der

Protonensorte	R R R	R R	$\frac{3}{R}$ $\frac{R}{R}$ $\frac{4}{R}$	R $\frac{1}{5}$ $\frac{5}{5}$
Cyclobutan-H				
a	4.81		4.09	
b	5.35	5.53	4.40	4.74
d	5.17	5.38	4.39	4.83
e	5.15	5.35	4.42	4.82
<u>f</u>	5.15	5.35	4.41	4.82
Ester-CH ₃				
<u>d</u>	3.85	3.86	3.43	3.27
Aromaten-H				
a	7.0 - 7.2		7.5 - 7.7	
b	7.04 - 7.40	7.15 - 7.36	7.51 - 7.98	7.72 - 7.96
d	6.95 - 7.35	7.01 - 7.30	7.47 - 7.92	7.51 - 7.97
e	6.99 - 7.29	7.08 - 7.27	7.51 - 7.97	7.51 - 7.97
f	7.02 - 7.29	7.08 - 7.26	7.51 - 7.91	7.50 - 7.97
Tab. 2 Ausgewählte	¹³ C-NMR-Daten der	Photodimeren <u>2</u>	- <u>5</u> (ppm, CDC1 ₃ , TMS	5) R
Kohlenstoff-Sorte	R R R	R R	$\frac{3}{R}$ $\frac{R}{R}$ $\frac{4}{R}$	R 5
Cyclobutan-C				
b	53.19	58.84	57.70	_ 8)
d	50.08	55.73	52.62	57.81
Quartäres C				
b	53.40	46.30	53.68	_ 8)
<u></u>	65.58	59.67	66.62	62.26

52.57

51.84

Tab. 1 Ausgewählte 1 H-NMR-Daten der Photodimeren <u>2</u> - <u>5</u> (ppm, CDC1₃, TMS)

Ester-CH₃

d

52.47

4097

51.58

Methin-Kohlenstoffe bei höherem Feld dagegen die Signale für die quartären Kohlenstoffatome bei tieferem Feld im Einklang mit den angenommenen Konstitutionen. In analoger Weise zeigt die tiefere Lage der Cyclobutanprotonen-Signale das Vorliegen der KS-Iso-

meren 3/5 an; die entsprechenden Protonen der KK-Isomeren absorbieren bei höherem Feld.

Dem Fonds der Chemischen Industrie und der BASF-AG sei für Sach- und Chemikalienspenden bestens gedankt.

LITERATUR

- Aus der Diplomarbeit H. Mayer, Universität Regensburg 1980; aus der Dissertation H. Mayer, Universität Regensburg 1983.
- (2) A. Castellan, G. Dumartin und H. Bouas-Laurent, Tetrahedron <u>36</u>, 97 (1980), dort frühere Literatur.
- (3) H. Mayer und J. Sauer, Tetrahedron Letters, vorstehend.
- (4) K = Kopf, S = Schwanz.
- (5) Die genauen photochemischen Bedingungen finden sich in Lit. 3 beschrieben.
- (6) 14 Tage Bestrahlung mit einer 500W Tageslichtlampe; das in dünner Schicht vorliegende Edukt wurde öfters umgeschichtet.
- (7) J.M. Hartmann, W. Hartmann und G.O. Schenck, Chem. Ber. <u>100</u>, 3146 (1967), dort frühere Literatur.
- (8) Isolierte Menge für 13 C-Untersuchung zu klein.

(Received in Germany 27 June 1983)